Vous souhaitez creuser le sujet des graisses brûleuses de calories ? 
Nous avons regroupé ici le fruit de nos recherches sur ce sujet passionnant que sont les graisses brunes. 

Découverte et fonctionnement des graisses brunes

Rothwell NJ, Stock MJ. Luxuskonsumption, diet-induced thermogenesis and brown fat: the case in favour. Clin Sci (Lond) 1983;64 :19-23.
https://portlandpress.com/clinsci/article-abstract/64/1/19/73003/Luxuskonsumption-Diet-Induced-Thermogenesis-and?redirectedFrom=PDF

Jan Nedergaard, Tore Bengtsson, and Barbara Cannon. 2007. Unexpected evidence for active brown adipose tissue in adult humans.
https://journals.physiology.org/doi/full/10.1152/ajpendo.00691.2006

Virtanen, K., et al., 2009. Functional brown adipose tissue in healthy adults.
https://pubmed.ncbi.nlm.nih.gov/19357407/

Enerback, S., 2010. Human brown adipose tissue.
https://www.sciencedirect.com/science/article/pii/S1550413110000781

Devlin, M., 2014. The “Skinny” on brown fat, obesity, and bone.
https://onlinelibrary.wiley.com/doi/full/10.1002/ajpa.22661

Garvan Institute, 2014. Evidence that shivering and exercise may convert white fat to brown.
https://www.garvan.org.au/news-events/news/evidence-that-shivering-and-exercise-may-convert-white-fat-to-brown

Maureen, D., 2014. The “Skinny” on brown fat, obesity, and bone.
https://onlinelibrary.wiley.com/doi/full/10.1002/ajpa.22661

Carpentier, A., et al., 2018. Brown Adipose Tissue Energy Metabolism in Humans.
https://www.frontiersin.org/articles/10.3389/fendo.2018.00447/full

Chechi, K., Lichtenbelt, WM., Richard, D., 2018. Brown and beige adipose tissues: phenotype and metabolic potential in mice and men.
https://journals.physiology.org/doi/full/10.1152/japplphysiol.00021.2017

Fletcher, L., et al., 2020. Sexual Dimorphisms in Adult Human Brown Adipose Tissue.
https://onlinelibrary.wiley.com/doi/abs/10.1002/oby.22698

Vidéos

Dr Denis Richard, Directeur scientifique du Centre de recherche de l'IUCPQ (Institut universitaire de cardiologie et de pneumologie de Québec). Recherche sur l'obésité et la graisse brune. 2011.
https://www.youtube.com/watch?v=2EM-GJqIeLw

André Carpentier, Endocrinologue, Professeur-Chercheur à la FMSSS (Faculté de médecine et des sciences de la santé de Sherbrooke). La graisse brune, un tissu unique. 2017.
https://www.youtube.com/watch?v=V9FZHKEfuxA

Graisses beiges

Bordicchia, M. et al., 2012. Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes.
https://www.jci.org/articles/view/59701

Jun Wu, Pontus Boström, Lauren M. Sparks, Sven Enerbäck, Patrick Schrauwen, Bruce M. Spiegelman, 2012. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human.
https://www.cell.com/fulltext/S0092-8674(12)00595-8

Activation des graisses brunes par le froid

Marken Lichtenbelt, W. et al., 2009. Cold-activated brown adipose tissue in healthy men.
https://www.nejm.org/doi/full/10.1056/nejmoa0808718

Imbeault, P., et al, 2009. Cold exposure increases adiponectin levels in men.
https://www.sciencedirect.com/science/article/abs/pii/S0026049508004356

Véronique Ouellet, Sébastien M. Labbé, Denis P. Blondin, Serge Phoenix, Brigitte Guérin, François Haman, Eric E. Turcotte, Denis Richard, and André C. Carpentier. 2012. Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans.
https://www.jci.org/articles/view/60433

Lans, A., et al., 2013. Cold acclimation recruits human brown fat and increases nonshivering thermogenesis.
https://www.jci.org/articles/view/68993

Villarroya, F. et Vidal-Puig, A., 2013. Beyond the sympathetic tone: the new brown fat activators.
https://core.ac.uk/download/pdf/82683976.pdf

Chen, K. et al., 2013. Brown fat activation mediates cold-induced thermogenesis in adult humans in response to a mild decrease in ambient temperature.
https://academic.oup.com/jcem/article/98/7/E1218/2536785

Blondin, D., et al., 2014. Increased Brown Adipose Tissue Oxidative Capacity in Cold-Acclimated Humans.
https://academic.oup.com/jcem/article/99/3/E438/2537319

Devlin, M., 2014. The “Skinny” on brown fat, obesity, and bone.
https://onlinelibrary.wiley.com/doi/full/10.1002/ajpa.22661

Lee et al., 2014. Temperature-acclimated brown adipose tissue modulates insulin sensitivity in humans.
https://pubmed.ncbi.nlm.nih.gov/24954193/

Blondin, D., et al., 2015. Selective Impairment of Glucose but Not Fatty Acid or Oxidative Metabolism in Brown Adipose Tissue of Subjects With Type 2 Diabetes.
https://diabetesjournals.org/diabetes/article/64/7/2388/19226/Selective-Impairment-of-Glucose-but-Not-Fatty-Acid

Anderson, J., et al, 2019. Estimating the cold-induced brown adipose tissue glucose uptake rate measured by 18F-FDG PET using infrared thermography and water-fat separated MRI.
https://www.nature.com/articles/s41598-019-48879-7

Jong, J., et al., 2019. Human brown adipose tissue is phenocopied by classical brown adipose tissue in physiologically humanized mice.
https://www-nature-com-s.caas.cn/articles/s42255-019-0101-4?error=cookies_not_supported&code=8616e843-3257-4f9a-b726-a744243aaf28

Leitner, B., et al., 2019. Kinetics of human brown adipose tissue activation and deactivation.
https://www.nature.com/articles/s41366-018-0104-3

Oreskovich, S., et al., 2019. MRI Reveals Human Brown Adipose Tissue Is Rapidly Activated in Response to Cold.
https://academic.oup.com/jes/article/3/12/2374/5586230

Mangel, L. et al., 2020. Gender Differences in the Response to Short-term Cold Exposure in Young Adults.
https://academic.oup.com/jcem/article-abstract/105/5/e1938/5798990

Saari, T., et al, 2020. Basal and cold-induced fatty acid uptake of human brown adipose tissue is impaired in obesity.
https://www.nature.com/articles/s41598-020-71197-2#Sec7

Straat, M. et al., 2022. Cold-Induced Thermogenesis Shows a Diurnal Variation That Unfolds Differently in Males and Females.
https://digibug.ugr.es/bitstream/handle/10481/73788/dgac094.pdf?sequence=1&isAllowed=y

McKie, G., et al., 2022. Topical application of the pharmacological cold mimetic menthol stimulates brown adipose tissue thermogenesis through a TRPM8, UCP1, and norepinephrine dependent mechanism in mice housed at thermoneutrality.
https://faseb.onlinelibrary.wiley.com/doi/pdfdirect/10.1096/fj.202101905RR

Soo-min Choi et al., 2023. Anti-Obesity Effects of Menthae Herba Hydrosol on High-Fat Diet Induced Obese Mice.
https://kiss.kstudy.com/Detail/Ar?key=4033988

Activation des graisses brunes par la nutrition

Yuriko Oi, Teruo Kawada, Keiko Kitamura, Fumiko Oyama, Mina Nitta, Yutaka Kominato, Syoji Nishimura, Kazuo Iwai, 1995. Garlic supplementation enhances norepinephrine secretion, growth of brown adipose tissue, and triglyceride catabolism in rats.
https://www.sciencedirect.com/science/article/abs/pii/095528639500025U

Couet, C., et al., 1997. Effect of dietary fish oil on body fat mass and basal fat oxidation in healthy adults.
https://www.nature.com/articles/0800451

Halberg et al., 2005. Effect of intermittent fasting and refeeding on insulin action in healthy men.
https://journals.physiology.org/doi/pdf/10.1152/japplphysiol.00683.2005

Berube-Parent, S., et al., 2007. Effects of encapsulated green tea and Guarana extracts containing a mixture of epigallocatechin-3-gallate and caffeine on 24 h energy expenditure and fat oxidation in men.
https://www.cambridge.org/core/journals/british-journal-of-nutrition/article/effects-of-encapsulated-green-tea-and-guarana-extracts-containing-a-mixture-of-epigallocatechin3gallate-and-caffeine-on-24-h-energy-expenditure-and-fat-oxidation-in-men/D265288A5270241C7DBBB7302D121876

Ono, K., et al., 2011. Intragastric administration of capsiate, a transient receptor potential channel agonist, triggers thermogenic sympathetic responses.
https://journals.physiology.org/doi/pdf/10.1152/japplphysiol.00128.2010

Yamashita, Y., et al., 2012. Prevention mechanisms of glucose intolerance and obesity by cacao liquor procyanidin extract in high-fat diet-fed C57BL/6 mice.
https://www.sciencedirect.com/science/article/abs/pii/S0003986112001099

Brown, Mosley and Aldred, 2013. Intermittent fasting: a dietary intervention for prevention of diabetes and cardiovascular disease?
https://publications.aston.ac.uk/id/eprint/19534/1/Intermittent_fasting.pdf

Paoli A., Rubini, A., Volek, J., 2013. Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets.
https://www.nature.com/articles/ejcn2013116/?crsi=6624969164

Ahn, J., et al., 2014. Allyl isothiocyanate ameliorates insulin resistance through the regulation of mitochondrial function.
https://www.sciencedirect.com/science/article/abs/pii/S0955286314001168

Srivastava, S., et al, 2014. A ketogenic diet increases brown adipose tissue mitochondrial proteins and UCP1 levels in mice.
https://www.ncbi.nlm.nih.gov/pubmed/23233333

Du, S., et al., 2015. Does Fish Oil Have an Anti-Obesity Effect in Overweight/Obese Adults? A Meta-Analysis of Randomized Controlled Trials.
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0142652

Yan, H., et al., 2015. Efficacy of Berberine in Patients with Non-Alcoholic Fatty Liver Disease.
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0134172

Hui Q. Zhang, Shi Y. Chen, An S. Wang, An J. Yao, Jian F. Fu, Jin S. Zhao, Fen Chen, Zu Q. Zou, Xiao H. Zhang, Yu J. Shan and Yong P. Bao, 2016. Sulforaphane induces adipocyte browning and promotes glucose and lipid utilization.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5111775

Wei, G., et al., 2016. Rutin ameliorates obesity through brown fat activation.
https://www.researchgate.net/publication/309329109_Rutin_ameliorates_obesity_through_brown_fat_activation

Jameel Lone, Jae Heon Choi, Sang Woo Kim, Jong Won Yun, 2016. Curcumin induces brown fat-like phenotype in 3T3-L1 and primary white adipocytes.
https://pubmed.ncbi.nlm.nih.gov/26456563

Gotthardt et al., 2016. Intermittent fasting promotes fat loss with lean mass retention, increased hypothalamic norepinephrine content, and increased neuropeptide y gene expression in diet-induced obese male mice.
https://academic.oup.com/endo/article/157/2/679/2422759?login=false

Douris, N., et al., 2017. Beta-adrenergic receptors are critical for weight loss but not for other metabolic adaptations to the consumption of a ketogenic diet in male mice.
https://www.sciencedirect.com/science/article/pii/S2212877817303071

Guolin, L., et al., 2017. Intermittent fasting promotes white adipose browning and decreases obesity by shaping the gut microbiota.
https://www.siditalia.it/images/Intermittent_Fasting.pdf

Lee, S., Parks, J., Kang, H., 2017. Quercetin, a functional compound of onion peel, remodels white adipocytes to brown-like adipocytes.
https://www.sciencedirect.com/science/article/abs/pii/S0955286316304788

Mele, L., et al., 2017. Dietary (Poly)phenols, Brown Adipose Tissue Activation, and Energy Expenditure: A Narrative Review.
https://academic.oup.com/advances/article/8/5/694/4772191

Zhao, Y., et al., 2017. The Beneficial Effects of Quercetin, Curcumin, and Resveratrol in Obesity.
https://www.hindawi.com/journals/omcl/2017/1459497/

Desjardins, E., Steinberg, G., 2018. Emerging Role of AMPK in Brown and Beige Adipose Tissue (BAT): Implications for Obesity, Insulin Resistance, and Type 2 Diabetes.
https://www.researchgate.net/publication/327078182_Emerging_Role_of_AMPK_in_Brown_and_Beige_Adipose_Tissue_BAT_Implications_for_Obesity_Insulin_Resistance_and_Type_2_Diabetes

Jang, M., et al., 2018. Theobromine, a Methylxanthine in Cocoa Bean, Stimulates Thermogenesis by Inducing White Fat Browning and Activating Brown Adipocytes.
https://www.sciencedirect.com/science/article/abs/pii/S0003986112001099

Song, Z., et al., 2018. Dietary Curcumin Intervention Targets Mouse White Adipose Tissue Inflammation and Brown Adipose Tissue UCP1 Expression.
https://onlinelibrary.wiley.com/doi/full/10.1002/oby.22110

Yoneshiro, T., Matsushita, M. and Saito, M., 2018. Translational aspects of brown fat activation by food-derived stimulants.
https://link.springer.com/chapter/10.1007/164_2018_159

Aranaz, P., et al., 2019. Low doses of cocoa extract supplementation ameliorate diet-induced obesity and insulin resistance in rats.
https://pubs.rsc.org/en/content/articlelanding/2019/fo/c9fo00918c/unauth

Bortolin, R., et al., 2019. Guarana supplementation attenuated obesity, insulin resistance, and adipokines dysregulation induced by a standardized human Western diet via brown adipose tissue activation.
https://onlinelibrary.wiley.com/doi/abs/10.1002/ptr.6330

Osuna-Prieto, F., et al., 2019. Activation of Human Brown Adipose Tissue by Capsinoids, Catechins, Ephedrine, and Other Dietary Components: A Systematic Review.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6416040/

Quan, L., et al., 2019. Myristoleic acid produced by enterococci reduces obesity through brown adipose tissue activation.
https://gut.bmj.com/content/69/7/1239.abstract

Wu, L., et al., 2019. Berberine promotes the recruitment and activation of brown adipose tissue in mice and humans.
https://www.nature.com/articles/s41419-019-1706-y

Chuanhai Zhang, Xiaoyun He, Yao Sheng, Jia Xu, Cui Yang, Shujuan Zheng, Junyu Liu, Haoyu Li, Jianbing Ge, Minglan Yang, Baiqiang Zhai, Wentao Xu, Yunbo Luo, Kunlun Huang, 2020. Allicin regulates energy homeostasis through brown adipose tissue.
https://www.sciencedirect.com/science/article/pii/S2589004220302984

Hui, S., et al., 2020. Resveratrol enhances brown adipose tissue activity and white adipose tissue browning in part by regulating bile acid metabolism via gut microbiota remodeling.
https://www.nature.com/articles/s41366-020-0566-y

Kalipahana, N., et al., 2020. Omega-3 Fatty Acids and Adipose Tissue: Inflammation and Browning.
https://www.annualreviews.org/doi/abs/10.1146/annurev-nutr-122319-034142

L. Melguizo Rodríguez, R. Illescas-Montes, V. J Costela-Ruiz, O. García-Martínez, 2020. Stimulation of brown adipose tissue by polyphenols in extra virgin olive oil.
https://pubmed.ncbi.nlm.nih.gov/32723184

Yuan, W., et al., 2020. Effect of the ketogenic diet on glycemic control, insulin resistance, and lipid metabolism in patients with T2DM: a systematic review and meta-analysis.
https://www.nature.com/articles/s41387-020-00142-z

Zhu, Y., et al., 2020. The polyphenol-rich extract from chokeberry (Aronia melanocarpa L.) modulates gut microbiota and improves lipid metabolism in diet-induced obese rats.
https://nutritionandmetabolism.biomedcentral.com/articles/10.1186/s12986-020-00473-9

Pei, Y., et al., 2021. Effect of quercetin on nonshivering thermogenesis of brown adipose tissue in high-fat diet-induced obese mice.
https://www.sciencedirect.com/science/article/abs/pii/S0955286320305647

Pei, Y., et al., 2021. Quercetin alleviates high-fat diet-induced inflammation in brown adipose tissue.
https://www.sciencedirect.com/science/article/pii/S1756464621002632

Tasic, N., et al., 2021. Black chokeberry Aronia melanocarpa extract reduces blood pressure, glycemia and lipid profle in patients with metabolic syndrome: a prospective controlled trial.
https://www.researchgate.net/profile/Miroslav-Mitrovic-3/publication/349832903_Black_chokeberry_Aronia_melanocarpa_extract_reduces_blood_pressure_glycemia_and_lipid_profile_in_patients_with_metabolic_syndrome_a_prospective_controlled_trial/links/62261863a39db062db87f645/Black-chokeberry-Aronia-melanocarpa-extract-reduces-blood-pressure-glycemia-and-lipid-profile-in-patients-with-metabolic-syndrome-a-prospective-controlled-trial.pdf

Verduci, E., et al., 2021. Brown Adipose Tissue: New Challenges for Prevention of Childhood Obesity. A Narrative Review.
https://www.mdpi.com/2072-6643/13/5/1450

Waldhart, A., et al, 2021. Excess dietary carbohydrate affects mitochondrial integrity as observed in brown adipose tissue.
https://www.sciencedirect.com/science/article/pii/S2211124721009153

Ya Pei,John S.Parks, Hye Won Kang, 2021. Quercetin alleviates high-fat diet-induced inflammation in brown adipose tissue.
https://www.sciencedirect.com/science/article/pii/S1756464621002632

Whittaker, J., Wu, K., 2021. Low-fat diets and testosterone in men: systematic review and metaanalysis of intervention studies.
https://arxiv.org/ftp/arxiv/papers/2204/2204.00007.pdf

Plucińska K., Zaman S., Cohen P., 2022. Fructose: Not sweet enough for brown fat?
https://www.sciencedirect.com/science/article/pii/S2666379122002968

Zheng Jiawei, Liu, Wujian, Zhu Jundong, 2023. Pterostilbene induces browning of white adipocytes via AMPK/PGC-1α pathway.
https://journals.lww.com/pn/Fulltext/2023/03000/Pterostilbene_induces_browning_of_white_adipocytes.7.aspx

Aishani Sivasai Gargapati, Mahboubeh Varmazyad, David Gius, 2023. Fasting induces greater expression of mitochondrial proteins associated with fatty acid metabolism and non-shivering thermogenesis in brown adipose tissue of knock-in ACSS1K635Q mice.
https://aacrjournals.org/cancerres/article/83/7_Supplement/4836/721531

Activation des graisses brunes par l'exercice

Moro, C. et al., 2006. Atrial natriuretic peptide stimulates lipid mobilization during repeated bouts of endurance exercise.
https://journals.physiology.org/doi/pdf/10.1152/ajpendo.00348.2005

A C Hackney, K P Hosick, A Myer, D A Rubin, C L Battaglini, 2012. Testosterone responses to intensive interval versus steady-state endurance exercise.
https://pubmed.ncbi.nlm.nih.gov/23310924

Lee, P., et al., 2014. Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans.
https://www.cell.com/cell-metabolism/fulltext/S1550-4131(14)00006-0

Yoshifumi Tsuchiya, Daisuke Ando, Kazushige Goto, Masataka Kiuchi, Mitsuya Yamakita, Katsuhiro Koyama, 2014. High-intensity exercise causes greater irisin response compared with low-intensity exercise under similar energy consumption.
https://www.jstage.jst.go.jp/article/tjem/233/2/233_135/_article/-char/ja/

Schwalm C., 2015. Activation of autophagy in human skeletal muscle is dependent on exercise intensity and AMPK activation.
https://pubmed.ncbi.nlm.nih.gov/25957282/

Carolina Archundia-Herrera, Maciste Macias-Cervantes, Bernardo Ruiz-Muñoz, Katya Vargas-Ortiz, Carlos Kornhauser, and Victoriano Perez-Vazquez, 2017. Muscle irisin response to aerobic vs HIIT in overweight female adolescents.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5746008/

Mattar, L., Farran, N., Bakhour, D., 2017. Effect of 7-minute workout on weight and body composition.
https://europepmc.org/article/med/28085122

P. Herbert, L D Hayes, N F Sculthorpe, F M Grace, 2017. HIIT produces increases in muscle power and free testosterone in male masters athletes.
https://pubmed.ncbi.nlm.nih.gov/28794164/#:~:text=Six%20weeks'%20HIIT%20improves%20PPO,in%20regimes%20of%20masters%20athletes.

Florie Maillard, Bruno Pereira, Nathalie Boisseau, 2018. Effect of High-Intensity Interval Training on total, abdominal and visceral fat mass: a meta-analysis.
https://pubmed.ncbi.nlm.nih.gov/29127602/

Motta, V., 2019. Browning is activated in the subcutaneous white adipose tissue of mice metabolically challenged with a high-fructose diet submitted to high-intensity interval training.
https://www.sciencedirect.com/science/article/abs/pii/S0955286318307861

Khalafi, M., et al., 2020. The Impact of Moderate-Intensity Continuous or High-Intensity Interval Training on Adipogenesis and Browning of Subcutaneous Adipose Tissue in Obese Male Rats.
https://www.mdpi.com/2072-6643/12/4/925/htm

Mohsen Jafari, Ismaeel Abbasi and Sahar Fathi Aralloo, 2020. The effect of eight weeks High-Intensity Interval Training (HIIT) on ofirisin levels in obese young men.
https://www.researchgate.net/publication/341782683_The_Effect_of_Eight_Weeks_High-Intensity_Interval_Training_HIT_on_of_Irisin_Levels_in_Obese_Young_Men

Chia-Liang Tsai, Chien-YuPan, Yu-TingTseng, Fu-Chen Chen, Yu-Chuan Chang, Tsai-Chiao Wang, 2021. Acute effects of high-intensity interval training and moderate-intensity continuous exercise on BDNF and irisin levels and neurocognitive performance in late middle-aged and older adults.
https://www.sciencedirect.com/science/article/abs/pii/S0166432821003600?dgcid=rss_sd_all

Fu, P., et al., 2021. Aerobic exercise promotes the functions of brown adipose tissue in obese mice via a mechanism involving COX2 in the VEGF signaling pathway.
https://nutritionandmetabolism.biomedcentral.com/articles/10.1186/s12986-021-00581-0

Daiana Araujo Santana-Oliveira et al., 2023. Exercise prevents obesity by reducing gut-derived inflammatory signals to brown adipocytes in mice.
https://joe.bioscientifica.com/view/journals/joe/259/1/JOE-23-0123.xml

Graisses brunes et hormones

Abelenda, M. et al., 1992. Brown adipose tissue thermogenesis in testosterone-treated rats.
https://eje.bioscientifica.com/view/journals/eje/126/5/acta_126_5_012.xml

Rodriguez, A. et al., 2002. Opposite actions of testosterone and progesterone on UCP1 mRNA expression in cultured brown adipocytes.
https://link.springer.com/article/10.1007/PL00012499?noAccess=true

Yasuda, T., et al., 2003. Centrally administered ghrelin suppresses sympathetic nerve activity in brown adipose tissue of rats.
https://www.sciencedirect.com/science/article/abs/pii/S0304394003007894

Tsubone, T., et al., 2005. Ghrelin regulates adiposity in white adipose tissue and UCP1 mRNA expression in brown adipose tissue in mice.
https://www.sciencedirect.com/science/article/abs/pii/S0167011505001205

Yuki, T., et al., 2008. Oxytocin receptor-deficient mice developed late-onset obesity.
https://journals.lww.com/neuroreport/Abstract/2008/06110/Oxytocin_receptor_deficient_mice_developed.10.aspx

Imbeault, P., et al, 2009. Cold exposure increases adiponectin levels in men.
https://www.sciencedirect.com/science/article/abs/pii/S0026049508004356

Mano-Otagiri, A., et al., 2010. Genetic suppression of ghrelin receptors activates brown adipocyte function and decreases fat storage in rats.
https://www.sciencedirect.com/science/article/abs/pii/S0167011509002328

Law, J., et al., 2014. The influence of sex steroids on adipose tissue growth and function.
https://www.researchgate.net/profile/James_Law4/publication/265017616_Audit_comparing_the_body-mass_index_BMI_of_children_with_type_1_diabetes_in_Nottingham_with_current_and_historical_background_populations_in_the_UK/links/5649ecba08ae295f644f93c4.pdf

Traish, A., 2014. Testosterone and weight loss: the evidence.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4154787/

Amstrup, A., et al., 2015. Reduced fat mass and increased lean mass in response to 1 year of melatonin treatment in postmenopausal women: A randomized placebo-controlled trial.
https://pubmed.ncbi.nlm.nih.gov/26352863/

Hewagalamulage, S., Lee, T., Henry, B., 2O16. Stress, cortisol, and obesity: a role for cortisol responsiveness in identifying individuals prone to obesity.
https://www.sciencedirect.com/science/article/abs/pii/S0739724016300340

Ramage, L., et al., 2016. Glucocorticoids Acutely Increase Brown Adipose Tissue Activity in Humans, Revealing Species-Specific Differences in UCP-1 Regulation.
https://www.sciencedirect.com/science/article/pii/S1550413116302972

Robinson, L., et al., 2016. Brown adipose tissue activation as measured by infrared thermography by mild anticipatory psychological stress in lean healthy females.
https://physoc.onlinelibrary.wiley.com/doi/full/10.1113/EP085642

Chondronikola, M., et al., 2017. Brown Adipose Tissue is Associated with Systemic Concentrations of Peptides Secreted from the Gastrointestinal System and Involved in Appetite Regulation.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6438623/

Rossum, E., 2017. Obesity and Cortisol: New Perspectives on an Old Theme.
https://www.proquest.com/openview/8a37d08c7e5e13226c04d7c63de0d9ef/1?pq-origsite=gscholar&cbl=105348

Scotney, H., et al., 2017. Glucocorticoids modulate human brown adipose tissue thermogenesis in vivo.
https://www.sciencedirect.com/science/article/pii/S0026049517300343

Thuzar, M., et al., 2017. Glucocorticoids suppress brown adipose tissue function in humans: A double-blind placebo-controlled study.
https://dom-pubs.onlinelibrary.wiley.com/doi/abs/10.1111/dom.13157

Olescuck, I., et al, 2019. Melatonin and brown adipose tissue: novel insights to a complex interplay.
http://melatonin-research.net/index.php/MR/article/view/55/399

Halpern, B., et al, 2019. Melatonin Increases Brown Adipose Tissue Volume and Activity in Patients With Melatonin Deficiency: A Proof-of-Concept Study.
https://diabetesjournals.org/diabetes/article/68/5/947/39739

Luijten, I., Cannon, B., Nedergaard, J., 2019. Glucocorticoids and Brown Adipose Tissue: Do glucocorticoids really inhibit thermogenesis?
https://www.sciencedirect.com/science/article/pii/S009829971930072X

Xu, Z., et al., 2019. Elucidating the Regulatory Role of Melatonin in Brown, White, and Beige Adipocytes.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7442421/

Fischer, A., Cannon, B., Nedergaard, J., 2020. Leptin: Is It Thermogenic?
https://academic.oup.com/edrv/article/41/2/232/5644230

Yuan, J., et al., 2020. The effects of oxytocin to rectify metabolic dysfunction in obese mice are associated with increased thermogenesis.
https://www.sciencedirect.com/science/article/abs/pii/S0303720720302033

Agil, A., et al, 2021. Melatonin Enhances the Mitochondrial Functionality of Brown Adipose Tissue in Obese—Diabetic Rats.
https://www.mdpi.com/2076-3921/10/9/1482/htm

Delphino, F., Figueiredo, L., 2021. Melatonin supplementation and anthropometric indicators of obesity: A systematic review and meta-analysis.
https://www.sciencedirect.com/science/article/abs/pii/S0899900721002616

Xu, L., Li, D., Li, H. et al, 2022. Suppression of obesity by melatonin through increasing energy expenditure and accelerating lipolysis in mice fed a high-fat diet.
https://www.nature.com/articles/s41387-022-00222-2

Velickovic K., et al., 2023. Leptin deficiency impairs adipogenesis and browning response in mouse mesenchymal progenitors.
https://www.sciencedirect.com/science/article/pii/S0171933523000572

Graisses brunes et diabète de type 2

Mc Millian-Price, J. et al., 2006. Comparison of 4 diets of varying glycemic load on weight loss and cardiovascular risk reduction in overweight and obese young adults: a randomized controlled trial.
https://jamanetwork.com/journals/jamainternalmedicine/fullarticle/410671

Li, S. et al., 2009. Adiponectin levels and risk of type 2 diabetes: a systematic review and meta-analysis.
https://jamanetwork.com/journals/jama/fullarticle/184206

Stanford, K. et al., 2013. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3533266/

Chondronikola, M. et al., 2014. Brown adipose tissue improves whole body glucose homeostasis and insulin sensitivity in humans.
https://diabetesjournals.org/diabetes/article/63/12/4089/40447/Brown-Adipose-Tissue-Improves-Whole-Body-Glucose

Graisses brunes et prévention santé

Jun Wu, Pontus Boström, Lauren M. Sparks, Sven Enerbäck, Patrick Schrauwen, Bruce M. Spiegelman, 2012. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human.
https://pubmed.ncbi.nlm.nih.gov/22796012/

Berbee et al., 2015. Brown fat activation reduces hypercholesterolaemia and protects from atherosclerosis development.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4366535/

George-Emmanuel Maalouf and Diala El Khoury, 2019. Exercise-induced irisin, the fat browning myokine, as a potential anticancer agent.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6466922/

Tobias Becher, Srikanth Palanisamy, Daniel J. Kramer, Mahmoud Eljalby, Sarah J. Marx, Andreas G. Wibmer, Scott D. Butler, Caroline S. Jiang, Roger Vaughan, Heiko Schöder, Allyn Mark & Paul Cohen, 2021. Brown adipose tissue is associated with cardiometabolic health.
https://www.nature.com/articles/s41591-020-1126-7

Ces articles peuvent vous intéresser :

>